Nata: Parigi, 1 aprile 1776
Matematica rivoluzionaria
A detta di tutti, Sophie Germain era una bambina un po ‘ ritirata.Era la seconda delle tre figlie di un mercante di seta parigino,Ambroise-François Germain. Una sorella ha sposato un funzionario del governoe l’altro un medico. Sophie non si sposò mai, visse a casatutta la sua vita e perseguì i suoi studi matematici con ciò che i suoi recenti biografi definiscono “passione e devozione senza limiti.”*
Il suo primo biografo, un matematico italiano di nome Libri, è la fonte di due storie raccontate su Germain che sembrano inquadrare la sua personalità. Come un 13-year-old, mentre si parla della Rivoluzioneirreggiava nella sua famiglia, si ritirò nella biblioteca di suo padre.Ci ha letto di Archimede, così assorto nei suoi mathematicalmusings che ha ignorato un invasore romano di Siracusa, che theyuponkilled lui. Potrebbe aver visto nella matematica di Archimede ” un ambiente in cui anche lei poteva vivere intatta dalla confusione della socialrealità.”**Ha studiato matematica da sola, e Libri racconta che i suoi genitori erano così contrari al suo comportamento che ha preso a studiare di notte. Hanno risposto lasciando il suo fuoco spento e prendendole sue candele. Sophie ha studiato comunque, fasciata in coperte, daleluce di candele contrabbandate.
Con l’istituzione nel 1795 dell’Ecole Polytechnique, che le donne non potevano frequentare, Germain fece amicizia con gli studenti e ottenne le loro dispense. Ha presentato un libro di memorie al mathematicianJ. L. Lagrange sotto il nome di uno studente maschio. Lagrange vide talento nel lavoro, cercò l’autore, e fu folgorato per scoprire che era stato scritto da una donna. Ha continuato a studiare, corrispondendocon i principali matematici del giorno.
Il suo lavoro matematico spostato dalla teoria dei numeri a più appliedmathematics. L’occasione è stata la dimostrazione da parte di un visitatore toParis, uno E. F. F. Chladni, di curiosi motivi prodotti su lastre di vetro ricoperto di sabbia e suonato, come se le lastre fossero violini, utilizzando un arco. La sabbia si muoveva fino a raggiungere i nodi, e la serie di modelli derivanti dal “suonare”di note diverse ha causato grande eccitazione tra i poli parigini. Era la prima “visualizzazione scientifica” di bidimensionalemovimento armonico. Napoleone autorizzò un premio straordinario perla migliore spiegazione matematica del fenomeno e fu emesso un bando di concorso.
L’ingresso di Sophie Germain era l’unico. Mentre conteneva mathematicalflaws ed è stato respinto, il suo approccio è stato corretto. Tutti gli altripossibili partecipanti al concorso erano prigionieri della sentenza paradigm, considerazione della struttura molecolare sottostante teorizzata per i materiali. Le metodologie matematiche appropriate alla vista molecolare non potevano far fronte al problema. Ma la Germania non era così gravata.
Vari matematici la aiutarono a perseguire una nuova applicazione, e vinse il premio al suo terzo tentativo, nel 1816. Il premio verypublic le ha guadagnato un po ‘ di attenzione. Ma il suo genderkept lei ” sempre al di fuori, come uno straniero, a distanzadalla cultura scientifica professionale.”
Forse solo un genio solitario come Germain è stato costituito per prosperare in tale isolamento, lasciando il suo lavoro di pura intelligenza come un faro alle generazioni successive di donne che hanno osato fare matematica per la gioia di esso.
* Louis L. Bucciarelli and Nancy Dworsky, 1980: Sophie Germain: An Essay in the History of the Theory of Elasticity (Dordrecht: D. Reidel), p. 10.
** Ibid. (Ma in realtà ha disegnato il sbagliatoconclusione. Archimede non morì per la sua distrazione, ma fu un bersaglio dei soldati romani proprio perché era stato il “cervello” dietro le difese siracusane, dirigendo la costruzione di catapulte e persino sviluppando un sistema di specchi per mettere a fuoco le navi romane e incendiare le loro vele.)
Ibid., pag. 30.